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An external field gives rise to a first-order transition in a smectic- A4 cell; the transition occurs by nu-
cleation of focal conic domains. The physical mechanisms that govern the behavior of the new domain
phase are different for small (p <<1) and large (p >>1) values of the order parameters p [p=(domain
radius)/(cell thickness)]. The nucleation (p << 1) is governed by the elastic and field energies and is facil-
itated by bulk or surface irregularities, while the expansion (p >>1) is determined by the balance of the

field and anisotropic surface energy.

PACS number(s): 61.30.Gd, 61.30.Jf, 64.60.Qb, 64.70.Md

A field-induced instability in liquid crystals was first
observed by Fréedericksz and Zolina for the nematic
phase [1]. It is a second-order phase transition from a
uniform state to a homogeneously deformed one, and it
occurs when an external magnetic or electric field be-
comes greater than the threshold value. Direct applica-
tion of the Fréedericksz idea to the instabilities in the
smectic- A phase (Sm- A) has resulted in the prediction of
a “ghost” transition [2]: the Sm-A4 phase is composed of
nearly incompressible layers and their equidistance prohi-
bits Fréedericksz-type distortions. A similar ‘“ghost”
problem appears in the layer undulation model [3,4]. As
proposed by Parodi [5], well-developed distortions in the
Sm- A phase could occur via the creation of dislocations.
All models [2-5] thus deal with the layer dilation. We
have proposed an opposite scenario of the field instability
in the Sm- A phase that is based on the idea that the lay-
ers could be simply curved by the field: the energy of
Sm- A curvatures is usually smaller than the energy of di-
lations.

A well-known type of curvature defect, which shows
up in the Sm-A phase is the torical focal conic domain
(TFCD) [6]. The geometry of the TFCD does not require
layer dilation (Fig. 1) and thus the elastic energy cost of
the domain appearance could be relatively small. On the
other hand, the gain in the diamagnetic or dielectric ener-
gy could be significant, since the growth of the domain
means maximal reorientation of layers (from horizontal
packing outside the TFCD to vertical alignment inside
the TFCD, Fig. 1). The TFCD instability will take place
when the anisotropy in the magnetic or dielectric suscep-
tibility is negative, i.e., ¥;—X,=X, <0 or ¢,—¢,=¢, <0,
where the subscripts refer to the director n that coincides
with the normal to the layer. In fact, the TFCD-
mediated transition has already been observed in experi-
ments with the new superparamagnetic Sm- 4 phase [7].

The study of focal conics has a long history. Observing
these objects in the early 1920s, Friedel [8] proved that
the Sm- A phase is composed of deformable but equidis-
tant layers. However, up to now, there has been no
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answer to the basic questions, how does the focal conic
domain arise from “nothing” and how does it grow?
There are more general aspects that make the study of
the TFCD instability important. First, the appearance of
the TFCD should be a first-order transition; the radius a
of the stable domain was found to be larger than some
macroscopic (a few micrometers) critical value [9]. It
means that the appearance of the TFCD implies some
kind of tunneling through the potential barrier. Second,
the Sm-A cell is spatially restricted. Thus the physical
mechanisms that govern the behavior of the domain
phase may be different for domains smaller or larger than
the cell thickness 4. Consequently, an unusual problem
arises: to describe the first-order transition adequately
one must consider not only the case of small order pa-
rameter p <1 (which can be chosen as p=a/h) but also
the case of large order parameter p>1. Here we study
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FIG. 1. The geometry of the torical focal conic domain nu-
cleation (a) and expansion (b). The smectic layers are folded
around the circle; this circle as well as the line of rotation sym-
metry are two linear defects in the director distribution. The
nucleation does not change the orientation at boundaries and
thus is defined by the elastic and field terms in Egs. (6) and (7).
In contrast, the expansion implies a significant reorientation at
the boundaries and is governed by the balance of the field and
anisotropic surface energies, Egs. (6) and (12).
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both the nucleation (p <1) and the expansion (p>1) of
the TFCD.

In the initial state the smectic layers are parallel to the
cell plates (homeotropic alignment of n). The magnetic
(H) or electric (E) field is applied along n, i.e., along the
vertical axis Z.

The layers are distorted inside the cylindrical volume
with radius @ and height A. The two principal radii of
layer curvature, R, and R,, are different in sign [10]:

R,=r>0, R,=r—a/sinf<0; (1)

here r is measured along n and varies in the range
[&,7max]> & is the smectic coherence length and 7, is re-
stricted by the finite cell thickness, and 6 is an angle be-
tween the axis Z and n.

The elastic energy per unit volume reads as

fa=(K/2)[(1/R)+(1/R,)*+1B&*, (2)

where the first term is associated with the mean curva-
ture of the layers and splay constant K, while the second
term with modulus B describes the dilation 8§ of layers
and can be temporarily neglected because of the specific
geometry of the TFCD. Elastic constants in Eq. (2) are
related, B ~K /A%, where A is close to the layer thickness
d (d~30 A) far from the Sm-A-nematic phase transi-
tion.
The diamagnetic energy density is

fr=—3X.(aH)*, 3)
J
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where in the case of the electric field action, y, and H
can be replaced by €, /47 (if €, <<¢|,€,) and E, respec-
tively.

When the TFCD appears, the molecular orientation in-

clines at both surfaces [0 <6 <arctan(2a /h)]. Thus the
surface term in the form, for example,
f,=W,sin?0 , 4)

should be taken into account; W, is the anisotropic part
of the surface energy. In principle, W, can be close to
the anchoring coefficients measured for the nematic
phase, 1073-107! erg/cm? However, if the surface tilt
implies a melting of the smectic layers, W, may be
significantly higher.

The instability consists in the appearance and growth
of the TFCD with variable radius @, when H becomes
sufficiently strong. The free energy of the domain forma-
tion is expressed as the difference AF in the total energy
of the defect state F=(F,+F;+F) and the uniform
state Fo=(F¢ o+ Fp o+ F o). The latter is easy to calcu-
late:

Fo=—my,Ha*h/2 . (5)

To obtain F, one should integrate Egs. (2) and (3) over
the domain volume and Eq. (4) over the corresponding
surface area. One gets from Egs. (1)-(5)

AF=2aKhp %an-i—L (arccot2p)+2 arccot2p lnﬂg2 -2 ] +arctan2p ln—@% - iln( 1+4p%)
+ Lwh®W,[4p*—4p arctan2p+In(1+4p?) ]+ 2—1;)(,,H2h 3[8p?— 6parctan2p +1In(1+4p?)+4mp> —8p’arctan2p] , (6)

where p=a /h and L (x) is Lobachevskiy’s function [11]:

L(x)=— foxlncost dt=x1n2—%2(—l)"_ls";# .
i=1

The dimensionless radius p can be considered as an or-
der parameter of the transition; for the initial state, p=0
and AF =0. Despite the apparent complexity of Eq. (6),
the equation is exact for domains of supramolecular size
and allows us to describe the behavior of the system in
the entire possible range of the order parameter p, i.e.,
from p>£/h =0 to p— . The limit p << 1 corresponds
to the nucleation of the TFCD’s and the limit p >>1 de-
scribes the domain expansion.

For p <<1 the linear and quadratic in p terms are asso-
ciated solely with the elastic energy, while the cubic term
is defined by the field:

AF(p<<1)=A,p+ A,p*+ A3p>+ Aup*+ - - -,
4,=27°Kh(B—2), A,=4wKh(InV2—B—3), (7)
As=(1?/6)x,H*h* ,

where B=1In(2a /&)= const. The surface anchoring con-
tribution begins only with p* and therefore can be

neglected: the deformations caused by a small TFCD are
restricted by the region of volume a® and practically do
not change the orientation at the boundaries.

The behavior of the system is determined by the signs
and values of the coefficients 4,, 4,, and 4;. 4, should
be positive. Otherwise, even in the absence of the field,
the Sm- 4 phase will be unstable with respect to the for-
mation of the TFCD’s. A4,, in principle, is negative;
however, since p? <<p, the corresponding contribution is
small. Aj; is negative because Y, <0. The balance of the
positive linear elastic term and negative cubic field term
leads to a first-order character of the transition. Figure
2(a) shows AF(p,H) calculated from the exact expression,
Eq. (6), for small p. Here and below we take estima-
tions A =100 pm, K =107° dyn, x,=—10"7 cgs, and
W,=0.1erg/cm?

For H =0, AF has only one minimum at p=0. As H
grows, the second local minimum appears for p>0.
When H overcomes some critical field, this minimum is
absolute and the uniform state becomes unstable versus
the formation of the TFCD. However, AF(p) goes
through a maximum AF* at p=p* that defines the criti-
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cal TFCD nucleus. Smaller TFCD’s (embryos) are unsta-
ble, while the larger ones are stable growing nuclei.
Equation (7), assuming that the field is strong enough,

A,/V A| A;| =8 <<, yields

Aili/2 _ 2 81T2K3/2(B__2)3/2
AF*=—_—1 2 —Vig+p)m2 2 27 (8)
W3y R VAT
and
p*=(2/HR){[K(B—2)]/|x.]1*. 9)

An analysis of Eq. (8) shows that the barrier AF* is too
high to be surmounted by thermal fluctuations for plausi-
ble H. Using estimations [12] for the characteristic rate
of the microscopic processes for the Sm-4 phase, one
finds that the fluctuation-induced nucleation will be ob-
servable if AF* <80kyT, or AF*<3X 102 erg. In ac-
cordance with Eq. (8), the last inequality will be satisfied
only if H >10° kG for the thermotropic Sm-4 phase or
200 G for the ferrosmectics described in [7]. It is worth
noting that the barrier problem should also be intrinsic
for the field-induced dislocation instability [5]; moreover,
since the dislocations considered in [5] are straight lines
rather than closed loops, the barrier is infinitely large.

The problem is thus to find the real path of the macro-
scopic TFCD tunneling. An apparent solution is that the
nucleation starts from a nonuniform state with nonzero
elastic energy rather than from the ideal uniform struc-
ture. This assumption was used in Refs. [13-15] to ex-
plain the experimentally observed TFCD formation at
the particular sites of a cell that are probably connected
with local inhomogeneities. The nucleation was observed
also at instabilities of the Sm- 4 — isotropic interface [16].
Moreover, observations [17,18] directly support the
scenario of heterogeneous nucleation: it has been re-
vealed that the focal conic domains appear along the sets
of dislocations rather than in dislocation-free regions.
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FIG. 2. The free energy of the domain formation calculated
from the exact expression (6) for different values of the external
field: (0) H=0, (1) H=10 kG, (2) H =20 kG, and (3) H =30
kG. The results of the calculations are represented for two
different scales: (a) p <<1 (nucleation) and (b) p >>1 (expansion).
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The main idea is simple: the bulk dust particle or sur-
face irregularity dilates (or compresses) the smectic layers
and thus the initial state is characterized by some
nonzero energy due to the B term in Eq. (2). The nu-
cleation of the TFCD means the substitution of the dila-
tion by curvature deformations [the K term in Eq. (2)],
which generally have less energy. The last circumstance
should decrease the barrier AF*.

Let us consider, as an example, a dust particle whose
shape is close to a circular bicone of height 2/ and base
radius R. It creates deformations that are relaxed by a
set of dislocation loops. The energy of a dislocation loop
with radius r; is [12,19] fo=mABd%r, /£, where £ is a
core radius and d is the Burgers vector taken equal to one
layer thickness. The energy of all n =2/ /d circular dislo-
cations is

Fau=mBdIR(A/E)=mK(ld /AE)R . (10)

Equation (10) assumes that the dislocations are indepen-
dent (which is close to reality when [/ <<R) and does not
take into account the contribution of strains that are not
relaxed by the loops. Estimations similar to Eq. (10) are
valid also for surface irregularity with conical shape.

The nonzero elastic energy Fgg of the initial state
drastically changes the AF behavior in the initially dis-
torted region, because it leads to a new negative contribu-
tion (— A4) to the AF expansion:

AF(p<<1)=(4,— A} )p+ -

=2mKh[B—2—(ld /27 E)]p+ -+ - . (11)
In principle, the last equation can also contain an addi-
tional field term because of the tilt of layers (~I/R) in
the vicinity of the inhomogeneity; however, this term is
negligibly small (~p* for R <<V'Ah. We also omit the
possible anchoring term describing the reorientation of
molecules at the boundary of the irregularity, since it is
proportional to p?.

Comparison of Egs. (7), (8), and (11) shows that the
barrier AF*=2(A4,— A1)3/?/3V'3| 4,|'/? is significantly
reduced by the contribution 4] from the dislocation en-
ergy. The barrier even completely disappears, if 4, < 4
or B—2<ld/2wA§. With d~&~A, B~4-9 this is
satisfied for irregularities as small as / ~(10-30)d, i.e., a
few hundred angstroms. It simply means that irregulari-
ty can nucleate the TFCD even when the external field is
absent.

The inhomogeneity-induced TFCD will expand up to
the point when a =R. For a >R, one should return to
the case of Egs. (6) and (7), because the layers outside the
domain are uniform. If the field is sufficiently strong to
satisfy the condition p*(H)h <R, the TFCD can grow
further; if p*(H)h >R, it stops at a =R. Equation (9)
shows that the irregularities with lateral size as small as
R =1 pum can satisfy condition p*(H)h <R starting with
fields =~ 130 kG; this field is smaller than the threshold of
the undulation instability (=200 kG for the 100-um cell
[6]). In fact, in real cells one can find irregularities that
are even larger than 1 um; e.g., the spacers fixing the sep-
aration of the cell plates and the oily streaks composed of
dislocations [18]. The remaining problem is to fill the
whole cell with the new phase, i.e., to consider the TFCD



RAPID COMMUNICATIONS

R42 0. D. LAVRENTOVICH AND M. KLEMAN 48

expansion when p >>1.

The behavior of the free energy AF differs principally
for p>>1 [Fig. 2(b)] and p << 1 [Fig. 2(a)], because of the
confined nature of the system (finite 4). First of all, the
volume of the completely reoriented layers for p>>1
scales as @A [Fig. 1(b)] rather than as a3 [Fig. 1(a)]; thus
the driving term ma’hy,H?/2 is now proportional to p?
rather than to p’. Furthermore, the layers in the TFCD
region are practically completely reoriented along the
field [Fig. 1(b)] and the anchoring term 2ma’W, «p?
should be considered. The elastic term, in contrast, re-
tains its behavior < Ka <p and thus can be neglected in
comparison with the field and surface contributions.
More precisely, Eq. (6) asymptotically transforms into

AF(p>>1)=(x,H*h*/24+2W_ h2)p*+ 7 KhpIn(h /E)+ - -+,
(12)

where only the leading terms in p are retained for each
type of contribution. Equation (11) describes a complete-
ly different situation in comparison with Eq. (7): domain
expansion is defined mainly by the competition between
the surface and the field energies. The balance of these
energies defines a “saturation” field H,,, above which the
first term in Eq. (12) is negative and which provides the
expansion of the TFCD:

Hsﬂtzz(Wa/lXalh)l/z . (13)

The thickness dependency H,, ~1/V'h coincides with
that found experimentally [7]. The saturation field does
not depend on the bulk elastic constants K and B; howev-
er, the anchoring strength W, might be related to these
constants. Equation (13) can be used for the quantitative
determination of W,. However, one should keep in mind
that H,, is not necessarily the field that provides the nu-
cleation of the TFCD: in cells without irregularities the
metastable uniform state can remain supercooled for
H>H,.

It is worth noting that Hg, for modest W, is
significantly smaller than the thresholds of the Helfrich-
Hurault undulation instability {2,3] and Parodi’s disloca-
tion instability [5]. These two instabilities are defined by
the balance of the field energy and the dilation energy,
Hyy=V 27AB /h|x,|~Hp. Thus the ratios

H/Hyy~H/Hp~(W,/AB)!? (14)

can be small, ~0.06, with W, ~0.1 erg/cm?, A=30 A,
and B ~10% dyn/cm? For the strongly anchored Sm- A4
phase, however, one can expect surface layer melting,
W, ~ Bd, and thus the ratios (14) will be close to unity. It
is interesting to note that the low-threshold transition is
predicted also for specific cycloid textures with virtual
defects when the Sm- A4 cell is located in between two iso-
tropic media [20].

We have described the first-order field-induced transi-
tion in the smectic- 4 cell, which takes place due to the
nucleation of the TFCD. Because of the restricted
geometry of the system, the behavior of the domain phase
is different for the cases when the order parameter p is
smaller and larger than unity.

The nucleation (p <<1) is defined by the balance of the
elastic and field energies. It is a heterogeneous process
controlled by irregularities such as dust particles, surface
roughness, and dislocation sets. The TFCD nucleation
from the uniform state is hindered by the high-energy
barrier. Similar situations with high potential barriers
are known for bubble nucleation in the electroweak
theory [21], vortex nucleation in superconductors [22],
defect transitions in nematic droplets [23], etc. Among
the listed fields, a detailed experimental study of the tun-
neling through the barrier is especially convenient for the
Sm- A phase, since the transition from the homeotropic
to the TFCD state can be easily detected by polarizing
microscopy [7].

The expansion (p >>1) of the new phase is governed by
the balance of the field and the surface anchoring ener-
gies. The last circumstance allows the quantitative study
of the anchoring phenomena in the Sm-A phase and,
more generally, the effect of the intrinsic surface anisotro-
py on the growth pattern during the first-order transition.
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